LECTURE NOTES: CHAPTERS 1 & 2 REVIEW

| PRACTICE PROBLEMS: |

1. Describe several ways in which a limit can fail to exists. Illustrate with sketches.
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2. Describe what it means for a function f(z) to be continuous at = a and several ways in which a
function f(x) carfail¥o be continuous at x = a. Illustrate with sketches.
The funetion £69) is conbnuous gt ¥=a ¥ t's all one piece at and arolnd X=a.

That 5, Hhe Lk ap?\—oaokmj o 250stS and s Qtpuwu\ Jo f(a).
Exanples ohere £63) fails +o be cotnusus:
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3. Describe what it means for a function f(z) to be differentiable at z = a. Illustrate with sketches
differentiable and non-differentiable examples.
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4. Use the graph of f(z) below to answer the following questions.

20§ (a) Assuming the arrows on the graph indicate
a continued curve in that direction, make

e MG S an educated guess at the domain of the
0T : function f(x).
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5 ’ (b) Find all z-values in the domain of f(z) for
which f(x)

i. fails to be continuous.

x=4)5,8
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ii. fails to be differentiable. X= 4)5') (A )8

(c) Evaluate the following limits or explain why they do not exist.

(i) xlirgf(fv): - 00 v) lim f(2) = D

(i) lim f(z) = |4 - (vi) lim f(z) = 5

(iii) lim, f(z) = DNE gt :Ee:tm (vi) lim f(a) = DNE . 1T G ¢ Lt 55
(i) lim /(@) = |0 i) iy 1) = O

5. (a) What does the Squeeze Theorem say? You may want to include a picture with your explana-

tion.
"F v ‘P()a zL= L1y h@ and ‘F(X)‘ 3@4 h()‘) +Hhen llw- 862) =L
xX=2 o X2 o-
Y h &)
Picture: 309
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b) Use the Squeeze Theorem to show hron Vzes(T/z) — ¢,
answer Choose £6) = 6 A% and ()= efx.
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6. (a) What does the Intermediate Value Theorem say? You may want to include a picture with

your explanation.
) '
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A

fovr any M between £(2) and -PUo))

e
Mheve 15 3eme x-valud m (a J15) tohare "
=M. - ] 4 7
-‘A:(\(ﬁ?maxlivc\j and ““'h’:"\r.'w'\j) FF0d a X

18 CLOV\‘BV\uous) £60 must it 2""-“3
Lolue oetween $(A) ahd FU3) l/\/a
Skipping OY jumping past y-values .

w 3 (b)oUSGEhe%;cirmed?ate Value Theorem to show Inz = = — 5 has a solution. (Hint: Show there

is a solution in the interval [1, €7].) .
Also £(x) is condinusus on CO,M),
Let X’()&:XIS—-M\Y. J -
Smece O s btween -4 and o -10,
New -T—C\B: |-5-Inl = —"‘f <0
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7.

(a) Given a function f(x), how do you determine whether or not its graph has any horizontal
symptotes?|Give an example of a function f(z) and z-value, ¢, such that the denominator of
f(z) is zero when = = ¢ but f(x) has no vertical asymptote at x = c"]

Horizonka) asqmplotcs art found by checking whet happens for large
and small x-vaTues. Sepuif'.ullj) 2 Y me BY-1 ov limm $RA=L

X-=1p0 X>=0

Hhen Y=L s o horizortal asynplots

(b) Given a function f(x), how do you determine whether or not its graph has any vertical

asymptotes? .
\’Ur—\-}i, ci{ ;S mPJ-a)-ZS are Loun 4 where +he lipmit ma@ a/o;:m?c/]#’
b!j vt ing an x-value ¢ on either wa“cfn e 'r:(l\, .
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so it Vi £ =7 oo £ nay opprod rfy

Xz~ Exampl -F&\;;_;" x= |

(c) Find the horizontal and vertical asymptotes (if any) of the graph of f(z) = 5575 —.
. 2
Verdticolt Sx+2Ze| = (3x-1)(x4 |>.—.o,

horizontal:
lim __é,’i__—— 2. So x=)3 or X=-| .
X7+ po 3y Zx-1 3 Now lim _CO()_—_OO and lima ‘(’(X\—"'OO
x-7.1t x> -t
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8. Find the limit or show that it does not exist. In each case, write in your own words, what (if
anything) your answers indicate about the graph of the given function.
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9. A particle starts by moving to the right along a horizontal line; the graph of its position function is
shown in the figure on the below.

10 ¢

s (feet)

(a) At what times is the particle moving to the
right?

oczt<2 and 84t < /p

(b) At what times is the particle moving to the

left?
\ S 32126

(c) At what times is the particle standing still?

24t43 ) Lb<zt=28

T T T t >
2 4 6 8 10

t (minutes)

(d) Sketch a graph of the velocity of the particle.
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