
LECTURE NOTES: CHAPTERS 1 & 2 REVIEW

PRACTICE PROBLEMS:

1. Describe several ways in which a limit can fail to exists. Illustrate with sketches.

2. Describe what it means for a function f(x) to be continuous at x = a and several ways in which a
function f(x) can fail to be continuous at x = a. Illustrate with sketches.

3. Describe what it means for a function f(x) to be differentiable at x = a. Illustrate with sketches
differentiable and non-differentiable examples.
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The function f G) is continuous at ×=a if it's all one piece at and around X=A .

That  is
,

the limit approaching a exists and is equal to f- (a)
.
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4. Use the graph of f(x) below to answer the following questions.
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20 (a) Assuming the arrows on the graph indicate
a continued curve in that direction, make
an educated guess at the domain of the
function f(x).

(b) Find all x-values in the domain of f(x) for
which f(x)

i. fails to be continuous.

ii. fails to be differentiable.

(c) Evaluate the following limits or explain why they do not exist.

(i) lim
x!4�

f(x) =

(ii) lim
x!4+

f(x) =

(iii) lim
x!4

f(x) =

(iv) lim
x!5

f(x) =

(v) lim
x!6

f(x) =

(vi) lim
x!7

f(x) =

(vi) lim
x!8

f(x) =

(vii) lim
x!8+

f(x) =

5. (a) What does the Squeeze Theorem say? You may want to include a picture with your explana-
tion.

(b) Use the Squeeze Theorem to show lim
x!0+

p
xe

sin(⇡/x) = 0.
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6. (a) What does the Intermediate Value Theorem say? You may want to include a picture with
your explanation.

(b) Use the Intermediate Value Theorem to show lnx = x � 5 has a solution. (Hint: Show there
is a solution in the interval [1, e5].)

7. (a) Given a function f(x), how do you determine whether or not its graph has any horizontal
asymptotes? Give an example of a function f(x) and x-value, c, such that the denominator of
f(x) is zero when x = c but f(x) has no vertical asymptote at x = c.

(b) Given a function f(x), how do you determine whether or not its graph has any vertical
asymptotes?

(c) Find the horizontal and vertical asymptotes (if any) of the graph of f(x) = 2x2

3x2+2x�1 .
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8. Find the limit or show that it does not exist. In each case, write in your own words, what (if
anything) your answers indicate about the graph of the given function.

(a) lim
x!�1

2� x

3x2 � x

=

(b) lim
x!1

[ln(1 + x

2)� ln(1 + x)] =

9. A particle starts by moving to the right along a horizontal line; the graph of its position function is
shown in the figure on the below.
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(a) At what times is the particle moving to the
right?

(b) At what times is the particle moving to the
left?

(c) At what times is the particle standing still?

(d) Sketch a graph of the velocity of the particle.
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